Gal80 dimerization and the yeast GAL gene switch.

نویسندگان

  • Vepkhia Pilauri
  • Maria Bewley
  • Cuong Diep
  • James Hopper
چکیده

The Saccharomyces cerevisiae Gal80 protein has two binding partners: Gal4 and Gal3. In the absence of galactose, Gal80 binds to and inhibits the transcriptional activation domain (AD) of the GAL gene activator, Gal4, preventing GAL gene expression. Galactose triggers an association between Gal3 and Gal80, relieving Gal80 inhibition of Gal4. We selected for GAL80 mutants with impaired capacity of Gal80 to bind to Gal3 or Gal4AD. Most Gal80 variants selected for impaired binding to Gal4AD retained their capacity to bind to Gal3 and to self-associate, whereas most of those selected for impaired binding to Gal3 lost their ability to bind to Gal4AD and self-associate. Thus, some Gal80 amino acids are determinants for both the Gal80-Gal3 association and the Gal80 self-association, and Gal80 self-association may be required for binding to Gal4AD. We propose that the binding of Gal3 to the Gal80 monomer competes with Gal80 self-association, reducing the amount of the Gal80 dimer available for inhibition of Gal4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.

The yeast transcriptional activator Gal4 localizes to UAS(GAL) sites even in the absence of galactose but cannot activate transcription due to an association with the Gal80 protein. By 4 min after galactose addition, Gal4-activated gene transcription ensues. It is well established that this rapid induction arises through a galactose-triggered association between the Gal80 and Gal3 proteins that...

متن کامل

Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch.

Galactose-activated transcription of the Saccharomyces cerevisiae GAL genes occurs when Gal3 binds the Gal4 inhibitor, Gal80. Noninteracting variants of Gal3 or Gal80 render the GAL genes noninducible. To identify the binding determinants for Gal3's interaction with Gal80 we carried out GAL3-GAL80 intergenic suppression analyses and selected for new GAL3 mutations that impair the Gal3-Gal80 int...

متن کامل

Gene activation by dissociation of an inhibitor from a transcriptional activation domain.

Gal4 is a prototypical eukaryotic transcriptional activator whose recruitment function is inhibited in the absence of galactose by the Gal80 protein through masking of its transcriptional activation domain (AD). A long-standing nondissociation model posits that galactose-activated Gal3 interacts with Gal4-bound Gal80 at the promoter, yielding a tripartite Gal3-Gal80-Gal4 complex with altered Ga...

متن کامل

Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.

Gal4-mediated activation of GAL gene transcription in Saccharomyces cerevisiae requires the interaction of Gal3 with Gal80, the Gal4 inhibitor protein. While it is known that galactose and ATP activates Gal3 interaction with Gal80, neither the mechanism of activation nor the surface that binds to Gal80 is known. We addressed this through intragenic suppression of GAL3C alleles that cause galact...

متن کامل

Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species.

Certain genes show more rapid reactivation for several generations following repression, a conserved phenomenon called epigenetic transcriptional memory. Following previous growth in galactose, GAL gene transcriptional memory confers a strong fitness benefit in Saccharomyces cerevisiae adapting to growth in galactose for up to 8 generations. A genetic screen for mutants defective for GAL gene m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 169 4  شماره 

صفحات  -

تاریخ انتشار 2005